If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-16k-35=0
a = 3; b = -16; c = -35;
Δ = b2-4ac
Δ = -162-4·3·(-35)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-26}{2*3}=\frac{-10}{6} =-1+2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+26}{2*3}=\frac{42}{6} =7 $
| 4x2−19x−30=0 | | 5/9(v)=45 | | 2y-15=39 | | 5(u+2)-8=28 | | -103+9x-4x=27 | | d=2(14) | | 12+4x=18+2x | | r46=3(r+6)+5(r+4) | | -2(x+5)=3x+25 | | 2+-v=3 | | 3x+12x-76=164 | | 6(n+2)=16 | | K3^2-16k-35=0 | | 3(m-5=m) | | 18y=72+9y | | 3x+110=2x+75 | | -(3x-5)4x=0 | | 7y+6=5y+2 | | 5/5=3/z | | 6(n+2)=19 | | 5^3x=35 | | 3n-5=85 | | x+(-18)=-20 | | -3=13-4r | | 4(x+2)=x+35 | | -5n+10=-8n+5-7 | | p+26/4=9 | | -8+2.25b=1.25b+12 | | 74.2=7(m+3.2) | | -5n+10=8n+5-7 | | 9(n+2)=16 | | 6(5x-3)=6 |